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Abstract. This paper considers the problem of minimizing a functional I which depends 

on the state x(t), the control u(t), and the parameter IT. Here, I is a scalar, x an n-vector, 

u an m-vector, and IT a p-vector. At the initial point, the state x is prescribed. At 

the final point, the state x and the parameter IT are required to satisfy q scalar relations. 

Along the interval of integration, the state, the control, and the parameter are required 

to  satisfy n scalar differential equations . A combined gradient-restoration algorithm 

is presented: this is an iterative algorithm characterized by variations &(ti, Au(t), An 

leading toward the minimal condition while simultaneously leading toward constraint 

satisfaction. These variations are computed by minimizing the first-order change of 

the functional subject to the linearized differential equations, the linearized boundary 

conditions, and a quadratic constraint on the variations of the control and the parameter 

The resulting linear, two-point boundary-value problem is solved via the method of 

particular solutions. The descent properties of the algorithm are studied, and schemes 

to  determine the optimum stepsize are discussed. 
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1. Introduction 

In previous papers (Refs. 1-S), the problem of minimizing a functional subject to 

certain differential constraints and boundary conditions was considered. A sequential 

gradient-restoration algorithm was presented. This algorithm includes the alternate 

succession of gradient phases and restoration phases. In the gradient phase, one 

lowers the value of the functional while avoiding excessive violation of the differential 

constraints and the boundary conditions. In the restoration phase, one restores the 

differential constraints and the boundary conditions to a predetermined accuracy 

while avoiding excessive change in the value of the functional. 

In this paper, the above prablem is considered once more. The main idea is to 

develop a combined gradient-restoration algorithm, that is, an iterative algorithm in 

which the gradient phase and the restoration phase are combined in a single phase. 

Therefore, one generates variations leading toward the minimal condition while 

simultaneously leading toward constraint satisfaction. 
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2 .  Statement of the Problem 

The purpose of this paper is to study the minimization of the functional 

1 

0 
1 = J f(x, u, n, t)dt + [g(x, n)l, (1) 

with respect to the functions x(t), u(t) and the parameter n which satisfy the differential 

constraint 

2 - ep(x,u,n,t) = o  

the initial condition 

(x>, = given 

and the final condition 

In the above equations, the functions f and g a r e  scalar, the function cp is an n-vector, and 

the function Jr is a q-vector. The symbol x, an n-vector, denotes the state variable; the 

symbol u, an m-vector, denotes the control variable; and the symbol n, a p-vector, 

denotes the parameter. The time t, a scalar, is the independent variable; without loss 

of generality, the prescribed initial time is t = 0 and the prescribed final time is t = 1. 

0 
At the initial point, all the components of the state vector are given, so  that (x) is 

known. At the final point, q scalar relations are specified, where 0 I q I; n +p.  

Problems where the final time is other than unity can be reduced to the form (1)-(4) 

by normalizing the time with respect to  the final time and by regarding the final time, 

if it is free, as  one of the components of the parameter TT. 
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3 .  Exact First- Order Conditions 

From calculus of variations (see, for instance, Refs e 6-7 ), it is known that the 

previous problem is one of the Bolza type. E can be recast as that of minimizing the 

augmented functional 

J = J  Fdt+(G)l 
0 

subject-to (2)-(4). In the above expression, the functions F and G are given by 

where 1, an n-vector, is a variable Lagrange multiplier and U, a q-vector, is a constant 

Lagrange multiplier. The superscript T denotes the transpose of a matrix. 

The optimum solutions x(t), u(t), IT must satisfy (2)-(4), the Euler equations 

1 

0 
0 = F , 1 FIT& +-(GIT)l = O  (d/dt)F? = Fx , 

U 

and the following natural condition arising from the transversality condition: 

(F? + G,>l = 0 

On account of (61, the explicit form of Eqs. (7)-(8) is the following: 

i = f  - CgxI 
X 

0 = €  - cpuh 
U 

,1 
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and 

Summarizing, we seek the functions x(t), u(t), x(t) and the parameters IT,U which satisfy 

Eqs. (2) and (9) subject to the boundary conditions (3), (4), (10). 
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4. Approximate Methods 

In general, the differential system (2)-(4) and (9)- (10) is nonlinear; consequently, 

approximate methods must be employed. These methods are of two kinds: first-order 

methods and second-order methods. 

Within the context of this paper, let the norm of a vector a be defined as 

T N(a) = a a 

. where the superscript T denotes the transpose of a matrix. Let the functionals P and Q 

be defined as 

' 1  

0 
P = N(i - cp)dt + N(Jr)l 

and 

Q = J N(x - f +CP X)dt + J '  N(fU - CP X)dt 
U 0 

x x  0 

These functionals heasure the cumulative errors  in the constraints and optimum conditions, 

respectively. W e  observe that P = 0 and Q = 0 for the exact variational solution, while 

P > 0 and Q > 0 for any approximation to the variational solution. 

When approximate methods are used, they must ultimately lead to  functions x(t), 

u(t), h(t) and parameters n,u such that 
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and 

where c and 8 are small, preselected nunhers. 
1 2 
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5. Derivation of the Algorithm 

Suppose that nominal functions x(t), u(t), n not satisfying the differential equation (2), 

the initial condition (3), and the final condition (4) are available. Let %(t), "ut), Ti denote 

varied functions satisfying Eqs . (2)-(4) to  first  order. These varied functions are related 

to  the nominal functions as follows : 

x"(t) = x(t) + k ( t )  , qt) = u(t) + Au(t) , .fi = IT + An 

where Ax(t), Au(t. , An denote the perturbations of x, u, IT about the nom-nal values. 

To first  order, the values of the varied functional f and the nominal functional I 

are related by 

I " = I + S I  

where the first variation 61 is given by 

I T  T 61 = (fx Ax + f  U h +$n)dt + (CnX + gTAn), IT 
0 

Also to first  order, Eq. (2) can be approximated by 

T T T &-TXaX- ,Au-T  n An+(.-cp)=O 

while the boundary conditions (3)-(4) are written as 

and 
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For convenience, we introduce the scaling factor S such that 

0 1 6 1 1  

and imbed Eqs . (19)-(21) in the more general family 

'W0 = 0 

Next, we consider the following quadratic constraint on the variations Au(t), An : 

K =I AuTAudt +An An (24) 
T 1 

0 

where K is a constant prescribed a priori. With this understanding, we formulate the 

following problem: Find the variations aX(t), Au(t), An which minimize (18) subject to 

(23)- (24). 

5.1. Variational Approach. From calculus of variations (see, for instance, Refs. 

6-7), it is horn tha t  the previous probIem is one of the Bolza type with an added isoperi- 

metric condition on the variations of the control and the parameter. It can be recast as 

that of minimizing the functional 

1 

0 
J* = F*dt + (G*)l (25) 

subject to (23)-(24). In the above expression, the functions F* and G" are given by 
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T T T T T T T  F* = f  AX + f  Au+fnAn+X [& - cp AX - cp Au-cpnAn+@(k-Cp)l 
X U X U 

T +(l/2a)Au Au 

where the n-vector X is a variable Lagrange multiplier, the q-vector u. is a constant 

Lagrange multiplier, and the scalar 1/2a is a constant Lagrange multiplier. The 

quantity ct is called the stepsize. 

The optimum solutions oX(t), Au(t), An must satisfy Eqs . (23)-(24), the Euler 

equations 

* * (d/dt)Fk = Fax , 0 = FAu , fF&dt + (G* An ) 1 = O  
0 

and the following natural condition arising from the transversality condition: 

* * 
( F & + G  ) = O  k 1  

On account of (261, the explicit form of Eqs . (27)- (28) is the followpg: 

x = f - cpxh 
X 

and 



11 AAR- 74 

5.2. Coordinate Transformation. To simpliEy the problem, we introduce the 

auxiliary variables 

A =Ax/ct B =Au/a , C = h / a  (31) 

where A denotes an n-vector proportional to the state change, B denotes an m-vector 

proportional to the control change, and C denotes a p-vector proportional to the parameter 

change. *With these variables, Eqs. (23-1) and (29) become 

B=cpTA+cp T T  B+eprrC - p(? - cp) 
X U 

h = f - cpxh 
X 

B = - f  + V I  
u u  

1 

0 
c = -J (fn - cpnw - kn+ *#I1 

(23 -2 )7 (23 -3 ), (30) are  written as  and t h  

and 

bo1 mdition 

(32) 

(33) 

where 

P = @/a 
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Finally, the isoperimetric condition (24) becomes 

1 

0 
K = ."[I BT13dt + CTC] (36) 

Let 6 be proportional to a throughout the algorithm. That is, let the parameter p 

have a value assigned a priori. Under these conditions, the linear, nonhomogeneous 

differedtial system (32)-(34) can be solved without assigning a value to the stepsize a. 

Once the system (32)-(34) has been solved, the stepsize a can be determined from Eq. 

(36), since (36) establishes a correspondence between the values of the isoperimetric 

constantlK and the values of the stepsize a. However, there is no way to determine 

a priori convenient values for the isoperimetric constant K; therefore, the 

implementation of the algorithm becomes simpler if one avoids evaluating a in terms 

of K and assigns values to a directly. 

5.3.  Integration Technique. W e  integrate the previous linear, nonhomogeneous 

differential system q + 1 times using a backward-forward integration scheme in combination 

with the method of particular solutions (Refs. 8-9). In each integration (subscript i), we 

assign a different set of values to the components of the multiplier u, for instance, 

- ui - 9 i = 1 , 2 , .  . . Y q+1 (3 7) 
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where the Kronecker delta 6.. is such that 
1J 

6 . , = l  , i = j  
11 

(38) 

6 . . = 0  , i # j  

With p. specified, the corresponding multiplier X. at the final point is obtained from (34-2), 

that is, from 

11 

1 1 

(xi + gx + $xq)l = o i = 1,2 , . . . , q+l (3 9)  

Next, Eq. (32-2). is integrated backward q+l times to yield the functions 

(40) Ai = L(t) , i = 1 ,2 , .  . .,q+l 

Then, the functions 

Bi = Bi(t) i = 1 , 2 , .  . .,q+1 (41) 

are computed from (32-3) and the parameters 

ci Y i = 1,2,  .. .,q+l (42) 

are computed from (32-4). Subsequently, Eq. (32-1) is integrated forward q+l times 

subject to the initial condition 

(43 1 i = 1,2, .  . .,q+l 
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In this way, we obtain the functions 

Ai = Ai(t) i = 1,2, .  . .,q+l (44) 

which are characterized by final values generally not consistent with (34- 1). Summarizing 

the q+l particular solutions thus obtained satisfy Eqs . (32), (33), (34-2) but not (34-1). 

Next, we introduce the q+l undetermined, scalar constants k. and form the linear 
1 

combinations 

and 

Then, we inquire whether, by an appropriate choice of the constants, these linear com- 

binations can satisfy all the differential equations and boundary conditions. l3y simple 

substitution, it can be verified that (45)-(46) satisfy the differential equations (32), the 

initial condition (33), and the final condition (34-2) providing the constants k. are such that 
1 

y l k i  = 1 
1=1 

(47) 

Finally, the functions (45)-(46) satisfy the final condition (34-1) providing 
q+l 

[P$ - +I k.(JrTA. 1 x 1  + JrTC.)] I T 1  = 0 (48) 
1 i=l 

The linear system (47)-(48) is equivalent to q+l scalar equations: the unknowns are 

the q+l constants ki. In this way, the two-point boundary-value problem is solved. 
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After the quantities A(t), a t ) ,  C have been determined and after a stepsize a has been 

selected (see Section 6), the variations bx(t), Au(t), An can be computed from (31) and 

the varied functions Z(t), Z(t), 5 from (16). 

5 .4 .  Descent Properties. After suitable maniplatioms, omitted for the sake of 

3 
brevity, the first variation of the augmented functional (5) can be written in the form 

6J - UQ (49) 

where Q, given by Eq. (13), reduces to 

Since Q > 0, Eq. (49) shows that the first variation 6J is negative for a > 0. Therefore, 

if a is sufficiently small, the augmented functional J decreases during the gradient phase. 

Next, consider the cumulative constraint e r ro r  (12) and observe that the first 

variation of P is given by 

In the light of (12), (23-l), and (23-3), Eq. (51) can be rewritten as 

1 
1 

Equation (52) shows that the first variation of the cumulative constraint e r ro r  is negative 

for 13 > 0. Note that 8 is proportional to a. Therefore, if a is sufficiently small, the 

cumulative constraint e r ror  decreases during any iteration. 
- 

In the computation of (49), the multipliers x(t) and u a re  held constant. 3 
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Finally, define the augmented penalty functional (Ref. 10) as 

W = J + k P  

where k 2 0 is the penalty constant. The first variation of (53) is given by 

6W = 6J+k6P 

which, in the light of (49) and (52), can be written as 

This equation shows thst, for a > 0 and 6 > 0, the first variation of the augmented 

penalty functional is negative. Note that B is proportional to a. Therefore, if a is 

sufficiently small, the augmented penalty functional decreases during any iteration. 

(53) 

(54) 
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6. Optimum Stepsize 

If Eqs e (16) and (31) are combined, the varied functions f;(t), u"(t), Ti can be 

expressed as  

Z(t) = x(t) + aA(t) , G(t) = u(t) + aB(t) , R = n + aC (56) 

Note that the nominal functions x(t), u(t), n are given and that the functions A(t), B(t), n 

are known from the solution of the linear, two-point boundary-value problem. Hence, 

Eq. (56) defines a one-parameter family of varied functions f;(t), u"(t), Ti, the parameter 

being the stepsize a. For this one parameter family, the functionals (5), (12), (53) 

yield the functions 

Since these fuwtionals have the descent properties (49), (52), (55), the functions (57) 

have a negative slope at a = 0, specifically, 

Hence, any of the functions (57) can be employed in order to arrive at some desirable 

value of the stepsize. In this connection, several possible schemes are presented below. 

Scheme I. Here, a is chosen to  minimize the augmented functional f(a) subject to 

the inequalities 

F(u) <F(O)  if F(0) 2 P, 

F(u) <P* if F(0) <P, 

where P, is a preselected number. 
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Scheme 11. Here, one searches alternatively on ?(a) andj(a). The search on ?(a) 

is subject to the inequality 

The search on j(a) is subject to  Ineqs . (59)-(60). 

Scheme III. In this scheme, which is a modification of Scheme 11, one searches 

on “pa) or  j(a) depending on the value of $(O>. Specifically, one searches on F(a) subject 

to (61) if 

P(0) 2 p** (62) 

And one searches onJ(u) subject to (60) if 

Here, P,, < P, is a preselected number. 

Scheme IV. In this scheme, which is a modification of Scheme 11, one searches 

on $(a) or ?(a) depending on the value d the ratio 

Specifically, one searches on F(u) subject to  (61) if 

And one searches onj(a) subject to (59)- (60) if 

Here, R,: is a preselected number 
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Scheme V. Here, a chosen so as to minimize the augmented penalty functional, 

G(a) = J(a) + kP(a) (67) 

The symbol k denotes a preselected positive number which is constant throughout the 

algorithm. Optionally, the search can be subordinated to Ineqs . (59)- (60). 

Scheme VI. In this scheme, which is a modification of Scheme V, one searches 

‘on the augmented penalty functional %(u), with this understanding: k is not constant 

throughout the algorithm but is updated with each step. For instance, one may choose 

or 

or 

The choice (‘70) produces values of T(a) and @(u) having the same order of magnitude for 

small values of a. 

Scheme VII. Here, the stepsize is set at the preselected value u = a*. This value 

is accepted if any of the following inequalities is satisfied: 

N 

P(CL) < i ( o )  and j(a) <j(o) 

or  

or 
N 

J(a) < i ( O )  and E(a) - F(0) I c4 g(0) (73 1 



20 AAR- 74 

where e and e are small, preselected numbers. Otherwise, a is reduced (for example, 3 4 

with a bisection procedure) until any one of Ineqs . (71)- (73) is satisfied. 

Remark. In Schemes I t h r o u a  VI, the search on the functionals J(a)? F(a), %(a) 

can be performed via quasilinearization, quadratic interpolation, o r  cubic interpolation. 

Let ?(a) denote a generalized functional which can be ?(a), &>, %(a), depending on the 

scheme employed. The search is terminated when 

where 6 is a small, preselected number o r  when 5 

Here, 8 is a small, preselected number, and al,a2 denote two consecutive optimum 6 

values of the stepsize. 

Stopping Condition. The algorithm is terminated when the cumulative constraint 

e r r o r  P satisfies Ineq. (14) and the cumulative e r ro r  in the optimum conditions satisfies 

Ineq. (15). 
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7 e Summary of the Combined Gradient-Restoration Algorithm 

In this section, the combined gradient-restoration algorithm is summarized. 

(a) Assume nominal functions x(t), u(t), n . Select a value for p e 

(b) For the nominal functions, compute the vectors f f f and the matrices x' u 'IT 

cp along the interval of integration. n 9x Y vu 9 

(c) Integrate the differential system (32), (33), (34-2) q+l times using a backward- 

forward integration scheme in combination with the method of particular solutions (see 

Section 5.3). Obtain the functions Ai(t), Bi(t). h.(t) and the parameters Ci, pi, where 

i = 1,2, . . . ,q+l  . 
1 

(d) Solve Eqs e (47)- (48) to obtain the constants kiy where i = 1,2, . . . , q+l e 

(e) Using Eqs . (45)- (46), combine the particular solutions linearly and obtain the 

functions A(t), B(t), h(t) and the parameters C,p. 

(f) Once the functions A(t), B(t), h(t) and the parameters C,p are known, compute 

the optimum stepsize a by a one-dimensional search on the generalized functional z"(a). 

This can be j(a), F(a), %(a), depending on the search scheme employed (see Section 6). 

(g) Once the optimum stepsize a is known, compute the corrections k( t ) ,  Au(t), 

On using Eqs . (31); then, obtain the varied functions x"(t), G(t), E using Eqs . (16). 

(h) With %(t), U"(t), E known, the iteration is completed; the varied functions ?(t), 

G(t), E become the nominal functions x(t), u(t), n for the next iteration; that is, return to 

(a), and iterate the algorithm. 

(i) The algorithm is terminated when the stopping conditions (14)-(15) are satisfied. 
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